

RTCM State Space Representation Messages, Status and Plans

Martin Schmitz

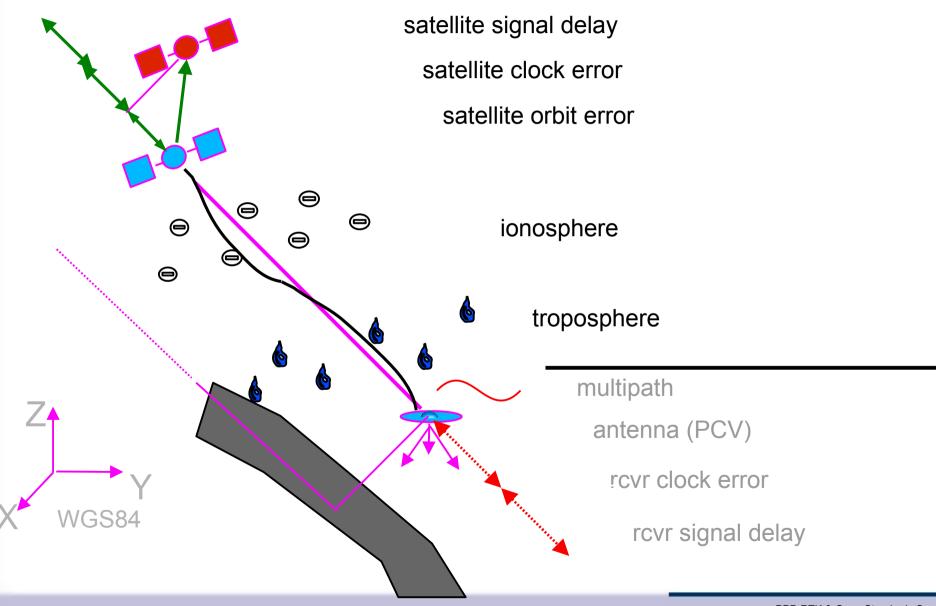
Geo++® GmbH 30827 Garbsen Germany www.geopp.com

> PPP-RTK & Open Standards Symposium, March 12-13, 2012, Frankfurt, Germany

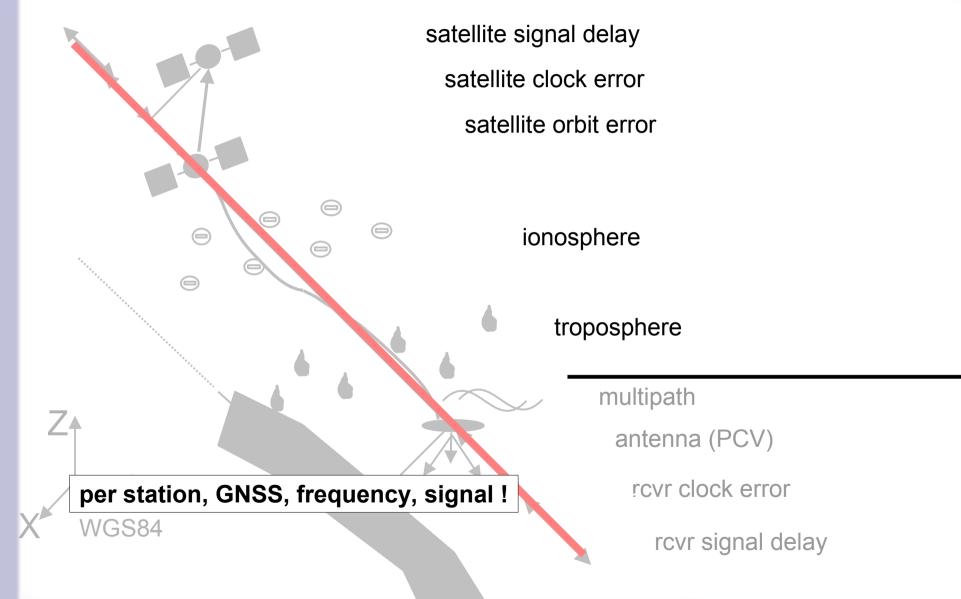
Outline

- Introduction
 - Observation Space/
 State Space Representation
- Status of RTCM SSR Messages
 - proposed work plan
 - 1st stage of RTCM SSR Messages
 - Messages and Features
- Plans for RTCM SSR Messages
 - 2nd stage of RTCM SSR Messages
- Future Plans for RTCM SSR Messages
 - 3rd stage of RTCM SSR Messages
- Summary

© 2012 Geo++® GmbH

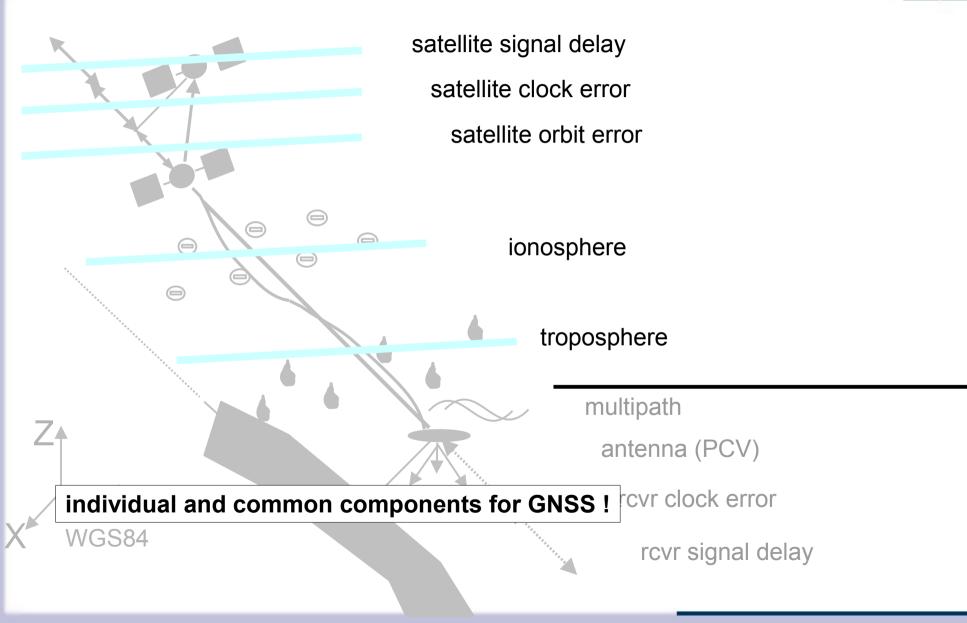


Introduction



- precise GNSS positioning requires the knowledge of all error components with corresponding accuracy for a variety of different applications
 - how do we provide this information in real-time?
 - what kind of open **standardized formats** can be used?

Introduction - Simplified Error Components



- common procedure today
 - **Observation Space Representation** (OSR)
 - distance dependent state parameters are derived and combined with reference station observations
 - OSR describes lump sum of GNSS errors
- Example:
 - RTK networking
 - RTK services use network of reference stations
 - RTK rover use observations of reference station(s) and RTK network corrections* (e.g. VRS, PRS, MAC)

* FKP considered SSR

VRS Virtual Reference StationPRS Pseudo Reference StationMAC Master Auxiliary ConceptFKP Flächenkorrekturparameter

Introduction - State Space Representation

- state-of-the-art procedure today
- provides all GNSS errors for direct use
 - State Space Representation (SSR)
 - functional and optional stochastic state description
- SSR describes each individual GNSS error
- Example:
 - **Precise Point Positioning** (PPP)
 - observations of **single** GNSS receiver
 - global or regional real-time network
 - rover uses state space information (e.g. IGS products)

Status of RTCM SSR Messages

- RTCM (Radio Technical Commission for Maritime Services)
- development of
 - International Standards
 - Open Standards
- RTCM SC-104 DGNSS Standards (Differential Global Navigation Satellite Systems)
- Working Group State Space Representation
 - since 2007
 - RTCM SSR Messages

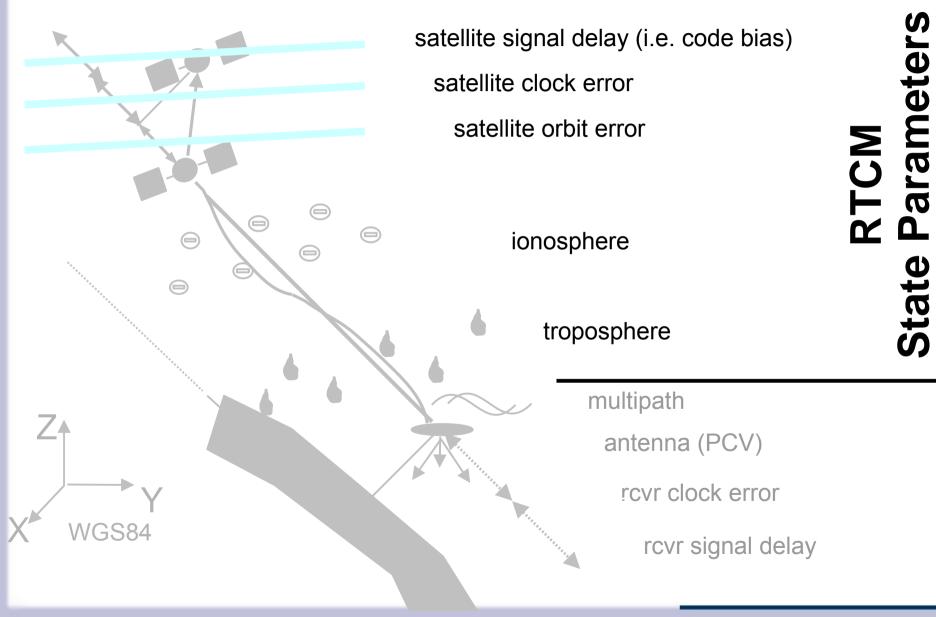
Status of RTCM SSR Messages

- proposed work plan consists of three major steps/stages and the development of messages:
 - 1st stage:

for precise **orbits**, satellite **clocks**, satellite **code biases** as well as **quality indicator** (URA)

- compatible to the <u>basic PPP</u> mode using IGS products
- enables <u>real time</u> PPP for <u>dual frequency</u> receivers: <u>DF-RT-PPP</u>
- 2^{nd} stage:

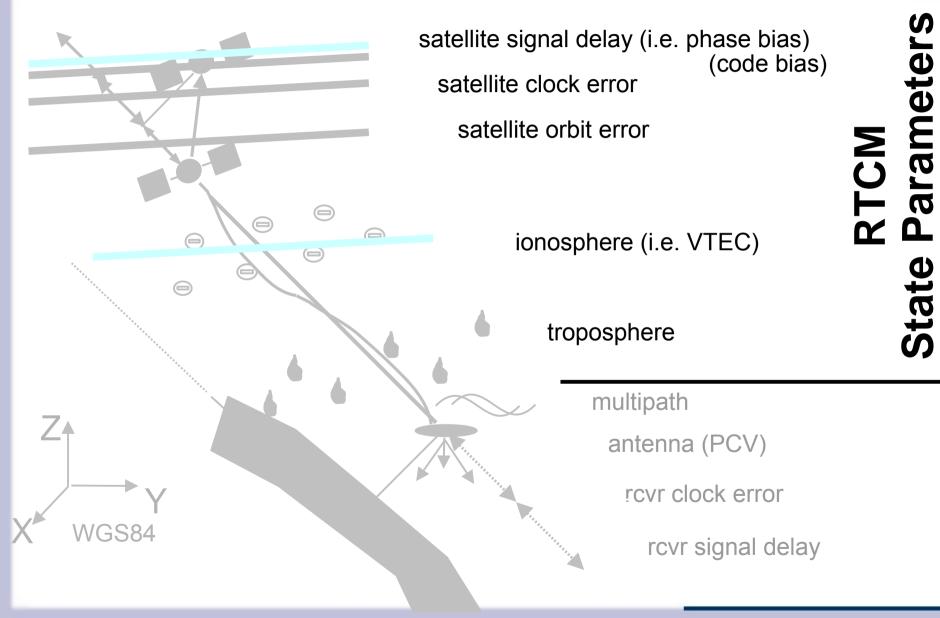
for vertical TEC (VTEC) ionosphere and satellite phase biases


- enables RT-PPP for single frequency receivers: SF-RT-PPP
- 3rd stage:

for slant TEC (STEC) ionosphere and troposphere

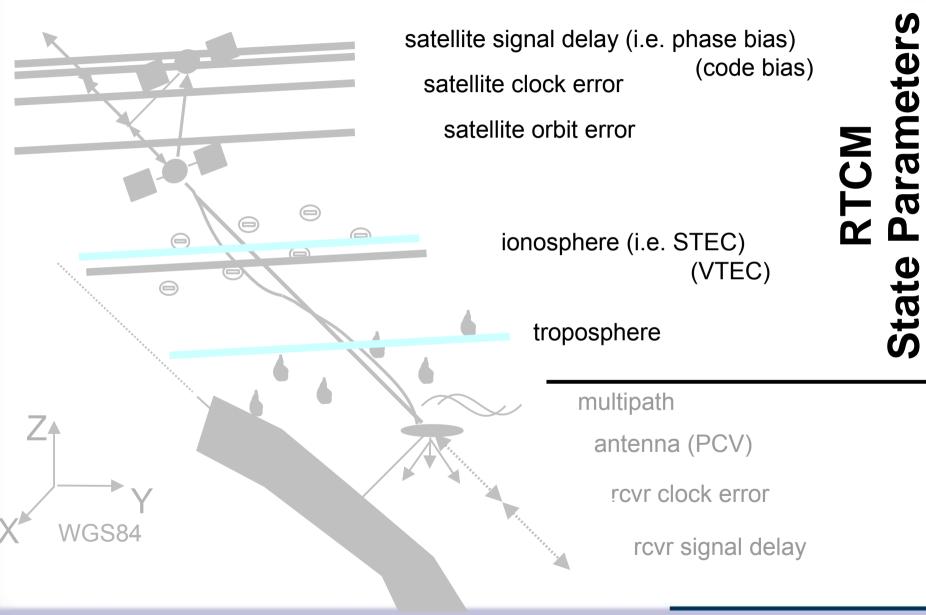
enables <u>PPP-RTK</u>

RTCM SSR DF-RT-PPP (1st stage)



PPP-RTK & Open Standards Symposium, March 12-13, 2012, Frankfurt, Germany

State


RTCM SSR DF-RT-PPP (2st stage)

RTCM SSR RTK-PPP (3rd stage)

Status of RTCM SSR Messages

- Ò.

- 1st stage of RTCM SSR Messages passed Mai 2011
- included in RTCM 3 Standard

RTCM STANDARD 10403.1 DIFFERENTIAL GNSS (GLOBAL NAVIGATION SATELLITE SYSTEMS) SERVICES – VERSION 3 DEVELOPED BY RTCM SPECIAL COMMITTEE NO. 104 JULY 1, 2011

- Amendment 5 RTCM Paper 142-2011-SC104-STD

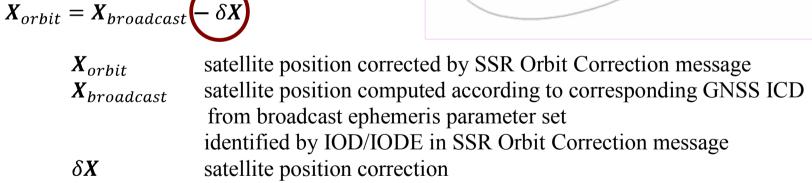
RTCM SSR Messages

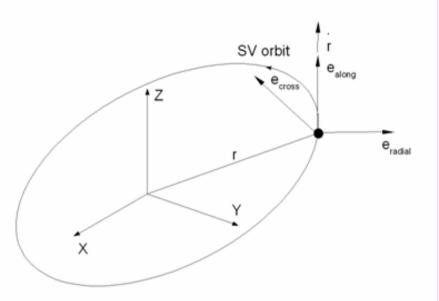
ò

- RTCM SSR Messages of 1st stage
- enables basic PPP (DF-RT-PPP)

Message Type	Message Name
1057	SSR GPS Orbit Correction
1058	SSR GPS Clock Correction
1059	SSR GPS Code Bias
1060	SSR GPS Combined Orbit and Clock Corrections
1061	SSR GPS URA
1062	SSR GPS High Rate Clock Correction

1063	SSR GLONASS Orbit Correction
1064	SSR GLONASS Clock Correction
1065	SSR GLONASS Code Bias
1066	SSR GLONASS Combined Orbit and Clock Correction
1067	SSR GLONASS URA
1068	SSR GLONASS High Rate Clock Correction

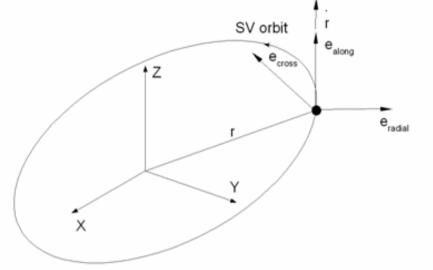

RTCM SSR Messages - Orbit


δΧ

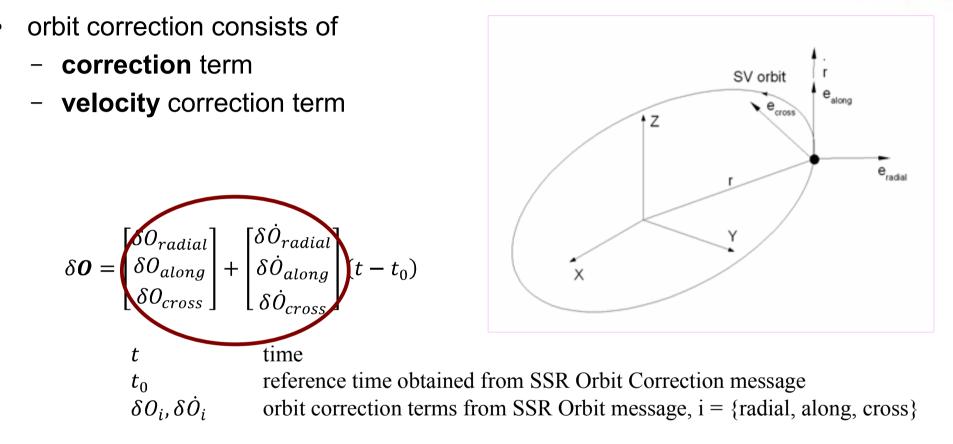
- orbit corrections refer to broadcast orbits
 - reduces bandwidth

Xorbit

 δX


RTCM SSR Messages - Orbit

- orbit corrections defined radial, along-track, cross-track
 - reduces bandwidth


$$e_{along} = \frac{\dot{r}}{|\dot{r}|}$$

 $\boldsymbol{e}_{cross} = \frac{\boldsymbol{r} \times \dot{\boldsymbol{r}}}{|\boldsymbol{r} \times \dot{\boldsymbol{r}}|}$

 $e_{radial} = e_{along} \times e_{cross}$ $\delta X = \begin{bmatrix} e_{radial} & e_{along} & e_{cross} \end{bmatrix} \delta 0$ $r = X_{broadcast}$ $\dot{r} = \dot{X}_{broadcast}$ e_{i} $\delta 0$ satellite broadcast position vector direction unit vector, i = {radial, along, cross} orbit correction vector

RTCM SSR Messages - Orbit

RTCM SSR Messages – Orbit Satellite Reference Datum Feature

- definition of coordinate reference system required
- satellite reference datum may refer to
 - ITRF for global services
 - regional realization related to the tectonic plate (e.g. ETRF, NAD, JGD, ...)
- Satellite Reference Datum flag indicates
 - "0" = ITRF or "1" = regional
- actual coordinate reference system identified by stream of service provider/ upcoming RTCM Transformation Message
- no transformation for rover required

RTCM SSR Messages – Satellite Clock

- clock corrections refer to broadcast clocks
 - reduces bandwidth
- clock corrections terms
 - C0, C1, C2 polynomial coefficients
- **relativistic effects** handled as defined in corresponding GNSS Interface Documents

 $t_{satellite} = t_{broadcast} - \frac{\delta c}{Speed of light}$

 $t_{broadcast}$ satellite time computed according to corresponding GNSS ICD from
broadcast clock parameters, identified by IOD/IODE of corresponding
SSR Orbit Correction message $t_{satellite}$ satellite time corrected by SSR Clock Correction message
clock correction obtained from SSR Clock Correction message

$$\delta C = C_0 + C_1(t - t_0) + C_2(t - t_0)^2$$

ttime t_0 reference time obtained from SSR Clock Correction message C_i polynomial coefficients from SSR Clock Correction message, i = {0, 1, 2}

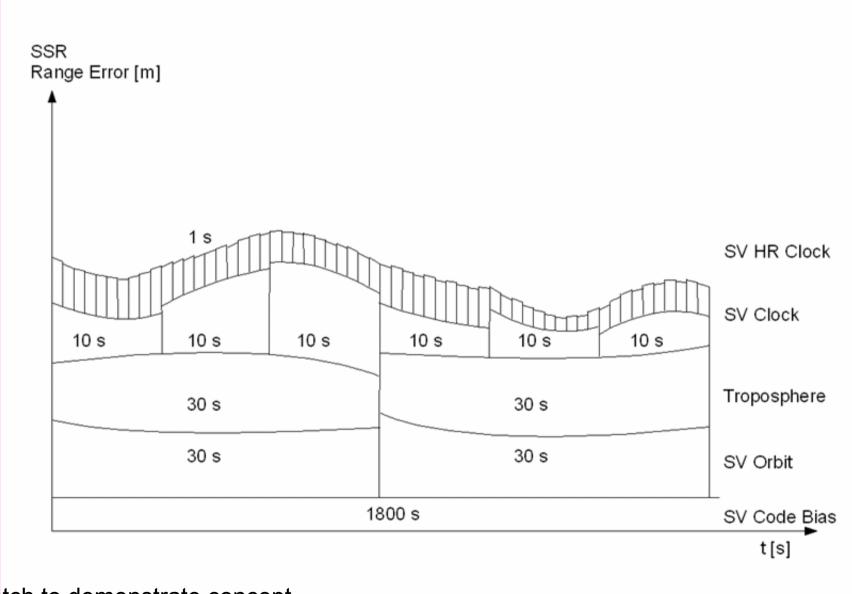
RTCM SSR Messages – Satellite High Rate Clock

- high rate clock
- additional message type
- correction term added to satellite clock correction
 - enables higher resolution
 - enables higher update rates

- RTCM SSR clock messages are multi-stage message types
 - two constituents (polynomial, high rate clock)
 - high rate clock optional
 - both constituents describe complete state of clock

RTCM SSR Messages – Satellite Code Bias, URA

- satellite code bias
 - absolute correction term (relative code biases obtained defining one bias to zero)
 - for every signal and tracking mode
- SSR User Range Accuracy (URA)
 - quality indicator for range correction
 - for complete set of disseminated RTCM SSR messages
 - high/low resolution for small/large numbers (URA_CLASS and URA_VALUE)
- URA is computed by:


URA [mm]
$$\leq 3^{\text{URA}_\text{CLASS}} \left(1 + \frac{\text{URA}_\text{VALUE}}{4}\right) - 1 \text{ [mm]}$$

RTCM SSR Messages - SSR Consistency of Data

- SSR messages support different applications, update rates and accuracy requirements
- **basic concepts** are
 - <u>additional</u> SSR <u>message type</u> adds <u>additional resolution</u> and positioning accuracy
 - SSR parameter may consist of different constituents
 - disseminated in different SSR message types
 - all relevant information without dependencies (as far as possible)
- SSR consistency essential issue
 - due to correlation state parameters
 - consistent set of parameters defines complete and accurate correction
 - importance increases with resolution and additional messages
- SSR Update Interval and GNSS epoch time
 - defines change of parameters (i.e. at the end of a SSR Update Intervals)
 - ensures consistency of data and processing

RTCM SSR Messages - SSR Consistency of Data

© 2012 Geo++® GmbH

 RTCM SSR Working Group currently working on addition to 1st stage and 2nd stage

- additions to RTCM SSR messages of 1st stage
 - SSR **Galileo** Messages compliant to 1st stage
 - enables basic PPP (DF-RT-PPP) for Galileo

Message Type	Message Name
MT+1	SSR Galileo Orbit Correction
MT+2	SSR Galileo Clock Correction
MT+3	SSR Galileo Code Bias
MT+4	SSR Galileo Combined Orbit and Clock Corrections
MT+5	SSR Galileo URA
MT+6	SSR Galileo High Rate Clock Correction

- SSR Phase Bias Messages
 - demand from users of RTCM SSR Messages 1st stage
 - supports use of phase observations
 - requires e.g. standardization of satellite orientation (yaw)
 - originally indented in 3rd stage
 - supports basic PPP (DF-RT-PPP)

Message Type	Message Name
MT+7	SSR GPS Phase Bias
MT+8	SSR GLONASS Phase Bias
MT+9	SSR Galileo Phase Bias

- RTCM SSR Messages 2nd stage
- independent from GNSS
- SSR vertical TEC (VTEC) ionosphere Messages
 - proposal of multi-stage message types
 - **spherical harmonics** to describe global ionosphere
 - grided higher resolution model to be added to first stage message MT+10 (regional/continental densification)
 - enables single frequency PPP (SF-RT-PPP)

Message Type	Message Name
MT+10	SSR Ionosphere Vertical TEC Spherical Harmonics
MT+11	SSR lonosphere Vertical TEC

Future Plans for RTCM SSR Messages

- RTCM SSR Working Group future work on 3rd stage RTCM SSR Messages
 - independent from GNSS
 - SSR slant TEC (STEC) ionosphere Messages
 - multi-stage message based on SSR VTEC Messages
 - SSR troposhere Messages

Summary

- increasing use **state space technology** (SSR)
- RTCM SSR messages 1st stage widely in use (orbit, clock, code biases)
- strong demand for a real-time streaming standard underlined by
 - already existing number of implementations
 - feedback/acceptance
- demand for an **Open Standard** as supported by RTCM SC104
- broad applications of RTCM SSR expected, which will push further developments
- further standardization efforts required
 - next stages are more complex
 - next stages add accuracy and applications
- final goal is Open Standard for PPP up to PPP-RTK