

Phase Biases Estimation for Undifferenced Ambiguity Resolution

D. Laurichesse Centre National d'Etudes Spatiales Toulouse, France

Ambiguity resolution background

Double differences

Satellite-satellite single differences

- Gabor (2002)
- Ge & Al (2007)
- Trimble RTX[™] (ION GNSS 2011)

Zero-difference methods

- CNES method, "Integer phase clocks", (ION GNSS 2007, ENC-GNSS 2008, ION ITM 2009, Navigation 2009)
- Collins, NrCan, "Decoupled clock model", ION ITM 2008
- Geng method (University of Nottingham,), "Undifferenced Hardware Delays", (ION GNSS 2008)
- Similar concepts: Mervart, Rocken, GPS Solutions, (ION GNSS 2008)
- Blewitt (NBMG & JPL), "Carrier Range", (AGU 2009)

CNES method overview

Wide-Lane (ionosphere-free, geometry-free combination, ~0.1 cycle noise)

Application to real-time integer-PPP

PPP-RTK & Open Standards Symposium, March 12-13, 2012, Frankfurt

RTIGS Pilot Project participation

CNES has developed a demonstrator based on integer PPP

- PPP-WIZARD: Acronym for "Precise Point Positioning With Integer And Zerodifference Ambiguity Resolution Demonstrator"
- In the framework of the RTIGS Pilot Project, the demonstrator has two objectives:
 - To contribute as an analysis center to the improvement of the combined product
 - To provide the full state space representation to users, including additional quantities for integer ambiguity resolution (using our own caster)
- CNES real-time analysis center since January 2011
 - GPS products since January 2011
 - GPS+Glonass products since December 2011
- CNES solution part of the combination since February 2011

Products statistics (one year)

0.15 0.15 0.00

Clocks sigmas over a year

Orbit quality around 5 cm

Clocks standard dev. around 0.05 ns (initial project target ~ 0.3 ns)

Contents of the demonstrator dynamic web server <u>www.ppp-wizard.net</u>

ODTS network monitoring & current status updated in real-time.

A PPP software modified for real time ambiguity resolution. Freeware, source code available, as well as a precompiled version for windows.

Free access to real-time products

- An anonymous access to the orbits/clocks stream dedicated to ambiguity resolution, from the CNES caster (CLK93 mountpoint).
- A link to the current widelane biases compatible with this orbits/clocks stream.
- A quick guide (ICD) on how to perform ambiguity resolution using CNES products.

A set of PPP monitoring stations scenarios

- Uses the PPP freeware with integer ambiguity resolution.
- Uses the anonymous real-time stream dedicated to ambiguity resolution.
- Displays errors in real-time.

Daily consolidated products, to perform ambiguity resolution off-line (sp3 and clk files).

COES Real time PPP monitoring (floating mode, BKG)

http://igs.bkg.bund.de/ntrip/ppp

Real time PPP monitoring with integer ambiguity resolution (CNES)

Displacements for GRAS, real time PPP

9

Advantages and drawbacks of the method

	PPP 2-frequencies	RTK 2-frequencies	CNES Integer PPP 2-frequencies		
Geometry	Global	Local (< 50 km)	Global		
Convergence time (TTFF)	Convergence : < 30 cm Kick start: 1 min static: 15 min dynamic: 30 min	Convergence : ~ 1 cm Instantaneous	Convergence : ~ 1 cm Kick start: 1 min static: 30 min dynamic: 90 min		
Horizontal accuracy	10-50 cm	~ 1 cm	~ 1 cm		

The method is operationally equivalent to PPP but with the accuracy of RTK on the horizontal component (1 cm vs. 10 cm)

Current biases representation and related problems

Current representation: biases on 2 combinations of observables

$$MW: L_1 - L_2 + \alpha_1 P_1 + \alpha_2 P_2 + \underline{H}_w \approx N_W$$

Phase iono – free: $\frac{\gamma \lambda_1 L_1 - \lambda_2 \Psi_2 + N_W}{\gamma - 1} + \underline{\Psi_P - H_L} \approx D + \lambda_C N_1 + H_P + ...$

Related problems

igs clock

- Representation too dependent on the resolution method
- No clear distinction between phase and code biases -> difficult to standardize
- Combinations are unique for the 2-frequency problem, but not for the 3-frequency problem

CNES Switch to a new bias representation

- We assume that code biases are already defined and known
 - They are already standardized in RTCM (message type 1059)
 - They are added to the raw measurements to obtain corrected measurements
- We extend the definition of code biases to the phase
 - Example with L₁, L₂:

$$P_1' = P_1 + b_{P_1} \approx D + h + \dots$$

 $P_2' = P_2 + b_{P_2} \approx D + h + \dots$

Already standardized (b_{P1}, b_{P2})

New quantities (b_{L1}, b_{L2})

- Phase biases are expressed in cycles and follow the same adding convention as code biases.
- The integer nature of phase ambiguities is explicit in phase biases equations
 - The biases can be used to retrieve the integer nature of phase ambiguities
- This representation needs to be completed
 - phase bias continuity indicator
 - Variance-covariance matrix

Computation of new phase biases

For the 2-frequency case, the new phase biases can be easily computed from the old convention, using a simple inversion:

$$\begin{pmatrix} b_{L_1} \\ b_{L_2} \end{pmatrix} = \frac{1}{\gamma \lambda_1 - \lambda_2} \begin{pmatrix} -\lambda_2 & 1 \\ -\gamma \lambda_1 & 1 \end{pmatrix} \begin{pmatrix} H_w - \alpha_1 b_{P_1} - \alpha_2 b_{P_2} \\ \P - 1 \end{pmatrix}$$

At the user level, we:

- Add the code and phase biases to the raw measurements
- Perform the MW and iono-free phase combinations to retrieve the integer values of ambiguities

This new bias representation is already implemented in our demonstrator:

- We use a modified message type 1059 with new field numbers
 - 21 and 22 for L1 and L2 biases respectively
- Caster: www.ppp-wizard.net:2101
- Mountpoints: CLK9A (CoM), CLK9B (APC)
- Access available on demand

Benefits of the new bias representation

- It uses the same convention as the existing RTCM standard for code biases
- It is closer to the physical behavior of the navigation payload than complex combinations
- It is independent of the method used on the network side to compute the biases
- It allows the user to implement the ambiguity resolution method of his choice
- The integer nature of phase ambiguities is conserved
 - But this representation can also take in account non-integer phase biases
 - For example it can represent the difference of clocks L1L2 and L1L5 observed by O. Montenbruck and others (ION GNSS 2011)

It can easily be extended to multi-frequency biases, without any assumptions on ambiguity resolution methods at the network or user level

Extension to 3 frequencies

- One day of biases have been generated off-line
 - Using CONGO network measurements (about 20 stations, courtesy O. Montenbruck)
 - Rinex-like file available on demand
- Integer ambiguity nature is conserved for all iono-free combinations
- For combinations that involve geometry, a reference orbits/clocks solution is chosen (in this case the JPL solution)
- 3-frequency biases could already be computed in real-time thanks to the BNC 2.5 freeware and the appropriate real-time network

PRN	Year	Month	Day	Hour	Min	Sec	C1	C2	C5	P1	P2	L1	L2	L5
G01	11	10	19	0	0	0.000	-4.952	-8.372	-0.052	-4.890	-8.053	24.694	31.637	0.860
G02	11	10	19	0	0	0.000	2.769	0.000	0.000	2.776	4.572	-14.252	-18.120	0.000
G03	11	10	19	0	0	0.000	-1.280	0.000	0.000	-1.089	-1.794	8.456	10.689	0.000
G04	11	10	19	0	0	0.000	-0.193	0.000	0.000	-0.519	-0.856	3.608	4.594	0.000
G25	11	10	19	0	0	0.000	-4.198	-7.138	0.052	-4.023	-6.625	23.507	30.254	-0.860
G26	11	10	19	0	0	0.000	-0.556	0.000	0.000	-0.751	-1.237	4.004	5.168	0.000

Already standardized New quantities

Already broadcast

PPP-RTK & Open Standards Symposium, March 12-13, 2012, Frankfurt

CIIENT SIDE Undifferenced three-carrier ambiguity resolution

- 1. Solve for extra widelane ambiguity (L2-L5)
- 2. Using extra widelane integer ambiguity value, solve for (L1-L2) wide-lane ambiguity
 - An intermediate observable where only widelane ambiguities are solved is of particular interest (unambiguous observable with low noise)
- 3. Solve for last ambiguity N1
- The entire ambiguity resolution process is reduced to a few minutes.

¢ cnes

Extra-widelane (L₅-L₂) resolution

Widelane (L₁-L₂) resolution

One key combination : iono-free combination of widelanes in meters

$$f \left[\underbrace{L_5} - L_2 \right] = \underbrace{L_2} - L_1 = D + \lambda_w \left[\underbrace{N_2} - N_1 \right] = \dots$$

■ We assume that the extra-widelane ambiguity (N₅-N₂) is already solved

$$\Rightarrow \lambda_w = 3.4m$$

This widelane ambiguity is easy to solve with the help of the geometry

Noise of the widelanes combination

PPP using the widelanes combination

- Based on real measurements (BRUS)
- Noise profile based on elevation and real 3freq. meas.
- Weighting of measurements with a function of elevation
- 10 cm class accuracy
- No convergence time (instantaneous)
- No pseudo-ranges involved (phase only solution)

Real time user position error with integer ambiguities (BRUS)

Remaining ambiguity (N1), geometry-free approach

We assume that the widelanes ambiguities are already solved
Combination : geometry-free and iono-free combination in N1 cycles

$$f (\mathbf{L}_1, L_2, L_5) \cong N_1 + \dots$$

Phase amplification factors

L1	L2	L5		
27.3	189.9	-161.6		

- Very important phase multipath amplification
- Strong time correlation
- N1 estimation longer than expected ~ 5 minutes
- Geometry approach -> same issue

Geometry-free, Iono-free combination (WTZR, PRN25) 2-N1 cycle -10-100 700 200 300 500 600 800 900 Epoch (30 s)

Advantages and drawbacks of the method (ext. 3-freqs)

	PPP 2,3 frequencies	RTK 2,3 frequencies	Integer PPP 2-frequencies	Integer PPP 3-frequencies Widelanes ambiguities only	Integer PPP 3-frequencies All ambiguities
Geometry	Global	Local (< 50 km)	Global	Global	Global
Convergence time (TTFF)	Convergence : < 30 cm Kick start: 1 min static: 15 min dynamic: 30 min	Convergence : ~ 1 cm Instantaneous	Convergence : ~ 1 cm Kick start: 1 min static: 30 min dynamic: 90 min	Convergence : < 30 cm Instantaneous	Convergence : < 1 cm ~5 min
Horizontal accuracy	10-50 cm	~ 1 cm	~ 1 cm	10-50 cm	~ 1 cm

Conclusion

Integer ambiguity orbits and clocks solutions have been computed in realtime using the current RTIGS network and NTRIP tools.

A full scale demonstrator using this method was developed in the RTIGS framework and has been running operationally since January 2011.

State space phase biases haven been switched to a new representation

- One phase bias per frequency
- Already broadcast for the 2-frequency case
- Off-line computation of 3-frequency biases in this representation
- User PPP 3-frequency algorithms are under study and show:
 - Instantaneous resolution at 10 cm level.
 - Full accuracy in minutes.