

PPP-RTK & Open Standards Symposium,13. March. 2012, Frankfurt, Germany

Centimeter-class Positioning Augmentation Utilizing Quasi-Zenith Satellite System

Y. Sato, M. Saito, M. Miya, M. Shima, Y.Omura, J. Takiguchi Mitsubishi Electric Corporation

K. Asari

Satellite Positioning Research and Application Center (SPAC)

- 1. Overview of Quasi-Zenith Satellite System (QZSS)
- 2. The Method of Centimeter-class Positioning Augmentation
- 3. QZS Application Demonstration of Centimeter-class Positioning Augmentation
- 4. Further Examples of the QZS Application
- 5. Conclusion

1. Overview of Quasi-Zenith Satellite System

Quasi-Zenith Satellite System

The Quasi-Zenith Satellite System (QZSS) developed by Japan Aerospace Exploration Agency (JAXA) is a regional navigation satellite system, which uses multiple satellites located on the quasi-zenith orbit, so that one of the satellites is always visible near the zenith at anywhere in Japan, including many extensive urban zones and mountains difficult to receive the existing GNSS signals.

Fig. 1. Multiple satellites on the quasi-zenith orbit ©JAXA Fig.2. Quasi-zenith orbit visible from the ground at Tokyo 3

2. The Method of Centimeter-class Positioning Augmentation

Centimeter-class Augmentation

Augmentation uses **Coded SSR* Message** which is available in nation-wide area of Japan, and is broadcast via QZS to achieve centimeter-class positioning accuracy.

- Error corrections for each area and each satellite are calculated in real time.
- The total message amount is reduced to 1/1000 of the existing ground-based service.
- Integrity information is broadcast with the corrections in the message.
- The augmentation targets GPS satellites at the moment.

State Space Representation (SSR) module is utilized as a correction generation engine.

Positioning method		Positioning Accuracy [rms]	Transmission to nation-wide of Japan	Transmission volume for the nation-wide	TTFF	Real- time	Availability for mobile object	
Network RTK	SSR	3cm	Possible	1695bps	Within 1min	Yes	Available	
	FKP	3cm	Possible	1.5Mbps	Within 30s	Yes	Available	
	VRS	3cm	Not possible	_	Within 30s	Yes	Available only near virtual reference points	

Tab.2. Comparison of centimeter-class satellite positioning

FKP: Flaechen Korrektur Parameter VRS: Virtual Reference Station

- <u>1.</u> SSR method provides each error component separately; satellite clock, satellite orbit, signal bias, ionosphere and troposphere.
- 2. We are able to choose transmitting period and spatial grid span of each component based on its physical characteristics.
- <u>3.</u> We optimized these parameter so that the total message amount is dramatically reduced and the required accuracy is still achieved concurrently.

The Coded SSR Message consists of a 49 bit header, <u>1695 bits of data</u> and 256 bits for error correction using Reed Solomon Coding. The total size of one message is 2000 bits. The actual transfer volume for augmentation data is 1695bps

Fig.4. Structure of "Coded SSR Message"

Error corrections and integrity information are broadcast.

The user can convert each error component to total correction at the user position.

Transmission Item	Components	Update period [s]	
High-speed correction items	Satellite Clock Correction	5	
	Satellite Orbit Correction	30	
I are speed correction items	Ionosphere Correction	30	
Low-speed correction nems	Troposphere Correction	30	
	Signal Bias Correction	30	
Integrity information	30		
Others (Preamble, GPS week/	30		

Tab.3. Contents of "Coded SSR Message"

Augmentation Network

The whole of Japan and surrounding ocean area are divided into 12 networks. In each network, error corrections are generated and combined.

No	Network
1	West Hokkaido
2	East Hokkaido
3	North Tohoku
4	South Tohoku
5	Kanto
6	Hokuriku
7	Chubu
8	Kansai
9	Chugoku
10	Shikoku
11	North Kyushu
12	South Kyushu & Okinawa

Fig.5. Augmentation Network covering the nation-wide of Japan

3. QZS Application Demonstration of Centimeter-class Positioning Augmentation

System Configuration

11

*CMAS was developed by SPAC, and funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan.

Result of Real Time Positioning

(static)

Real time accuracy is 1.0 cm (drms) in horizontal and 1.9 cm (rms) in vertical direction.

Fig.6. Error Distribution in the horizontal direction

Tab.4.	Real tin	ne fixed	point	position	ing result
--------	----------	----------	-------	----------	------------

Evalu	Accuracy				
	Average error	0.9cm			
Horizontal direction	Standard deviation (σ)	0.4cm			
	Positioning accuracy (drms)	1.0cm			
	Average error	-1.2cm			
Vertical direction	Standard deviation (σ)	1.4cm			
	Positioning accuracy (rms)	1.9cm			
3D direction	Positioning accuracy (drms)	2.1cm			

(a) Latitude direction error

(b) Longitude direction error

Fig.7. Time variations of error

Observation: 11 a.m. to 5 p.m. (JST) on 1st January 2011: a total of 6 continuous hours

Experiment for Mobile Positioning

Experiment for mobile Positioning is carried out with MMS equipped with LEX Rover (LEXR), antennas and a LEX signal receiver.

Fig.8. Configuration of the experiment

<u>Result of Real Time Positioning</u> (kinematic)

The same level of positioning accuracy as FKP method which is officially approved as a standard method for public survey in Japan, can be obtained.

Fig.9. Distribution of difference in the horizontal direction

Tab.5. Real-time positioning result of mobile object

Evaluati	Difference		
Harizantal direction	Average	0.6cm	
Honzonial direction	Standard deviation	1.2cm	
Vartical direction	Average	1.4cm	
ventical direction	Standard deviation	1.9cm	

Fig.10. Time variations of difference

Observation: 37 minutes from 10 a.m. (JST) on 23rd December 2010.

Variation in Accuracy for Areas

Tab.6. Variation in accuracy for areas

Natural	Accura	Ein acto		
INETWORK	Horizontal (drms)	Vertical (rms)	rix rate	
Hokkaido West	1.2cm	3.0cm	96%	
South Tohoku	1.1cm	2.8cm	98%	
Kanto	1.3cm	2.7cm	98%	
Kansai	1.2cm	3.0cm	97%	
Chugoku	1.3cm	2.8cm	97%	
Shikoku	1.4cm	2.9cm	98%	
South Kyushu	1.2cm	3.2cm	97%	
Average	1.2cm	2.9cm	97%	

Observation : at West Hokkaido, South Tohoku, Kanto, Kansai, Chugoku, Shikoku, and South Kyushu for 2 days out of February, April, June, August and October in a period of 1 hour from 9 a.m., 12 p.m. and 3 p.m. (JST)

Time to First Fix (TTFF)

We evaluated the fix time of hot start by using some reference stations which were not used for the generation of augmentation data. The cumulated frequency of the fix time achieved 100% at <u>**2.8 sec**</u>. Because another 30 sec is necessary to receive one cycle of Coded SSR message, TTFF in this evaluation was <u>**32.8 sec**</u>.

Fig.11. Cumulative frequency distribution of fix time

Observation: 12 p.m. and 1 p.m. (JST) on 4th February 2010 from 7 ERPs in the Kanto network.

4. Further Examples of the QZS Application

"GPS ocean wave meter"

Utilizing QZSS

Tsunami is observable with cm-class accuracy on the sea within 50km from the nearest ERP^{*1}. With QZSS reinforcement and INS^{*2} integration, continuous 100% positioning can be realized. CMAS's cm-class positioning contributes to **Ocean Civil Engineering**, **Maritime Security Operation** and **Maritime Charting**.

ERP		Distance from nearest ERP		Distance	Positioning Results		
		Shimizu (93043)	Maruyama (950227)	from CMAS network border	Horizontal	Upward	Fix rate
93051	Oshima1	56.9km	59.4km	31km	2.02cm	2.33cm	100%
960594	Oshima3	62.2km	56.4km	33km	2.14cm	3.29cm	96%
960595	Oshima4	58.8km	63.6km	36km	1.93cm	3.73cm	89%
93055	Oshima2	67.9km	61.2km	41km	2.27cm	5.96cm	83%
960596	Toshima	73.9km	84.1km	53km	1.64cm	2.22cm	90%

"Automatic Driving of Tractor" Utilizing QZSS

Hokkaido

University

Tokyo University

of Marine Science and Technology

An unmanned tractor with LEX Rover and a LEX signal receiver was driven autonomously with centimeter-class accuracy at the experiment, which was carried out by Hokkaido University on 23rd August 2011.

The autonomous vehicle control using LEX signal will efficiently work for valuable applications, such as Farming, Construction and Logistics.

This unmanned tractor was also demonstrated at Tokyo University of Marine Science and Technology in ICG-6 technical tour on 6th September 2011.

Potential QZSS Application Utilizing "MMS"

References:" Image Lab 2011.1 Vol22", p.79

References:" Image Lab 2011.1 Vol22", p78-79

5. Conclusion

- ☆ We developed a pre-practical system for centimeter-class positioning augmentation utilizing the Quasi-Zenith Satellite System.
- \Rightarrow SSR method is utilized as a correction generation engine.
- ☆ We performed real-time positioning experiments both for static and kinematic in the field with QZS-1 'MICHIBIKI'.

Experimental Result

Same level of accuracy and TTFF as the conventional centimeter-class positioning systems which are publicly approved and used for public survey has been achieved.

Future Plan

The practical realization of the Centimeter-class Augmentation System. Generation of wide variety of new applications with centimeter-class positioning accuracy.

Thank you for your attention

The development of CMAS by SPAC was made in commission of the "Development and preparation of positioning terminals and a simulator towards the promotion of utilization of QZSS" as a part of the 2009 Earth Observation Technology Survey Research, funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan.