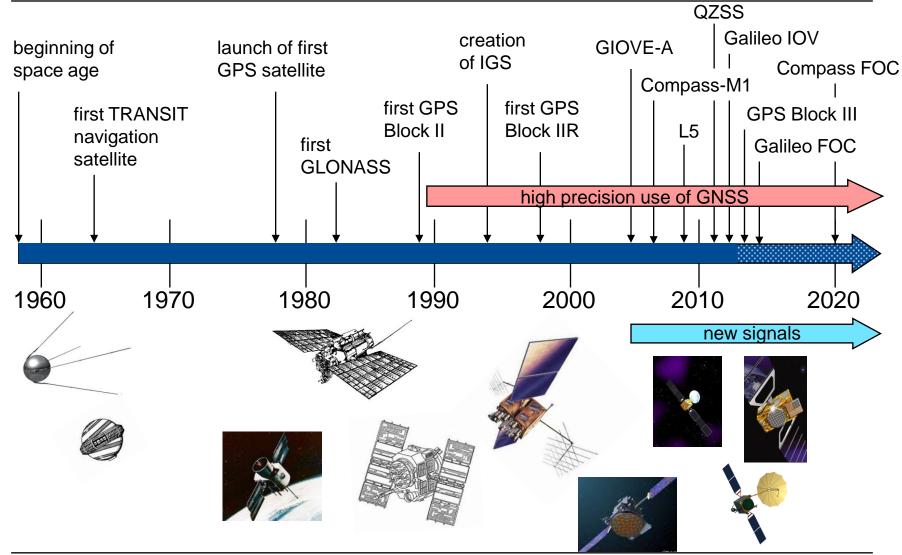


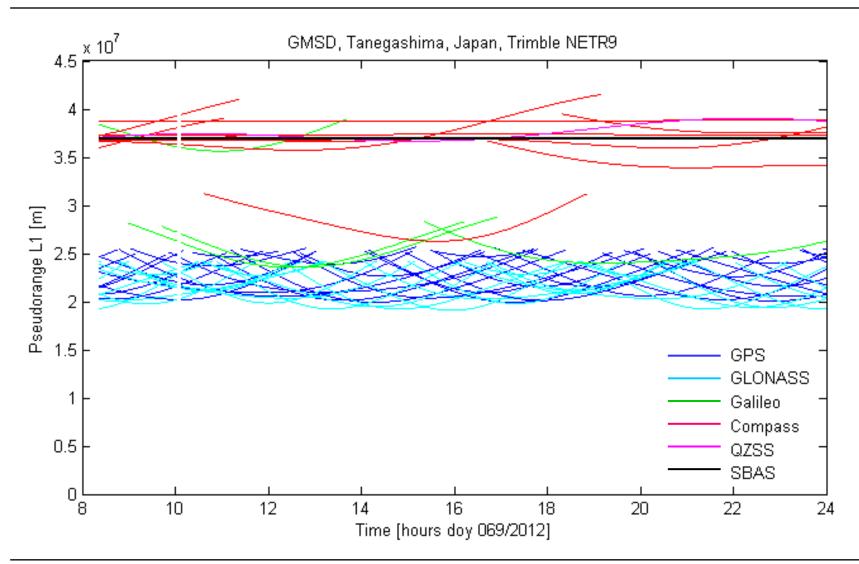
From GPS to GNSS Challenges and Prospects

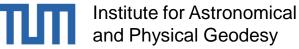
Urs Hugentobler


Institute for Astronomical and Physical Geodesy Technische Universität München, Germany

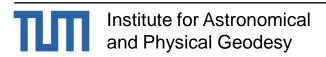
International GNSS Service (IGS)

PPP-RTK & Open Standards Symposium Frankfurt a. M., March 12, 2012


Short History of Satellite Navigation



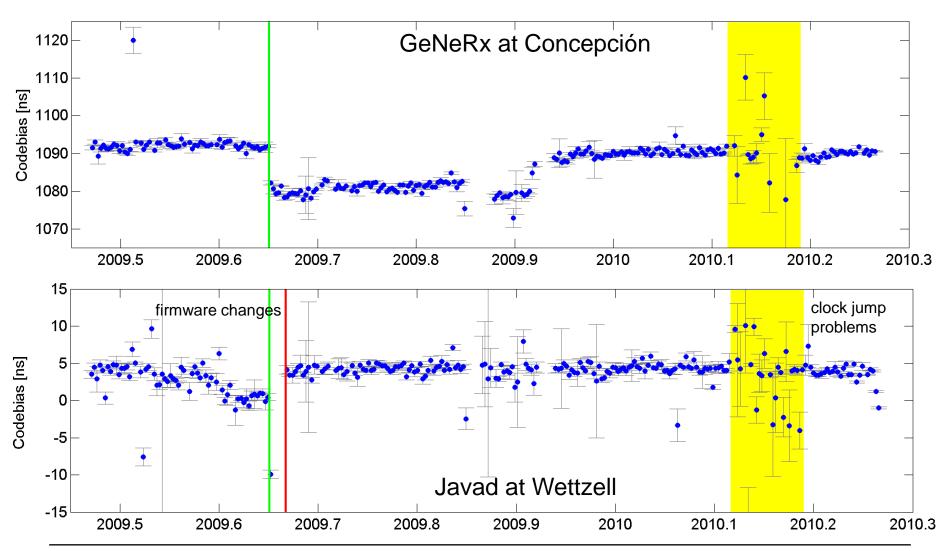
New Satellite Systems



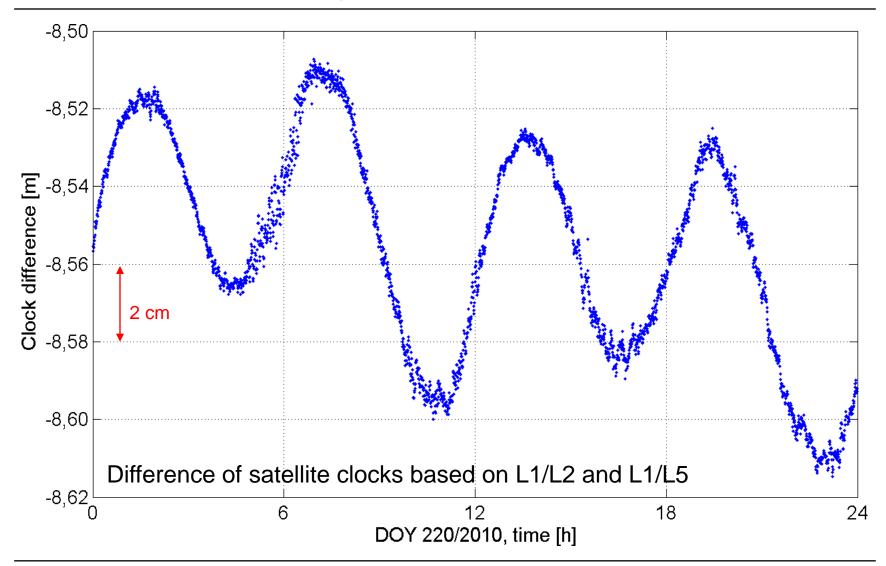
RINEX 3.0 Observation File


```
3.00
                                                         RINEX VERSION / TYPE
                 OBSERVATION DATA
                                     M (MIXED)
                                        20120309 082056 GMT PGM / RUN BY / DATE
Bnx2Rnx
                    congo
Source NTRIP stream gnss.gsoc.dlr.de/GMSD1
                                                             COMMENT
GMSD1
                                                             MARKER NAME
     M
                                                             MARKER NUMBER
Hauschild
                    DLR/GSOC
                                                             OBSERVER / AGENCY
5049K72188
                                                             REC # / TYPE / VERS
                    TRIMBLE NETR9
                                          4.43
4938353448
                    TRM59800.00
                                    SCIS
                                                             ANT # / TYPE
 -3607665.0563 4147867.7288 3223716.9486
                                                             APPROX POSITION XYZ
                      0.0000
                                    0.0000
                                                             ANTENNA: DELTA H/E/N
        0.0000
    16 C1C L1C D1C S1C C2X L2X D2X S2X C2W L2W D2W S2W C5X
                                                             SYS / # / OBS TYPES
      L5X D5X S5X
                                                             SYS / # / OBS TYPES
    20 C1C L1C D1C S1C C2C L2C D2C S2C C1P L1P D1P S1P C2P
                                                             SYS / # / OBS TYPES
      L2P D2P S2P C3X L3X D3X S3X
                                                             SYS / # / OBS TYPES
    16 C1X L1X D1X S1X C5X L5X D5X S5X C7X L7X D7X S7X C8X
                                                             SYS / # / OBS TYPES
E
      L8X D8X S8X
                                                             SYS / # / OBS TYPES
    8 C1C L1C D1C S1C C5X L5X D5X S5X
                                                             SYS / # / OBS TYPES
    12 C2I L2I D2I S2I C6I L6I D6I S6I C7I L7I D7I S7I
                                                             SYS / # / OBS TYPES
    24 C1C L1C D1C S1C C1X L1X D1X S1X C1Z L1Z D1Z S1Z C2X
                                                             SYS / # / OBS TYPES
      L2X D2X S2X C6X L6X D6X S6X C5X L5X D5X S5X
                                                             SYS / # / OBS TYPES
          many new observation types
```

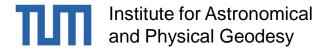

new systems


Galileo Signals

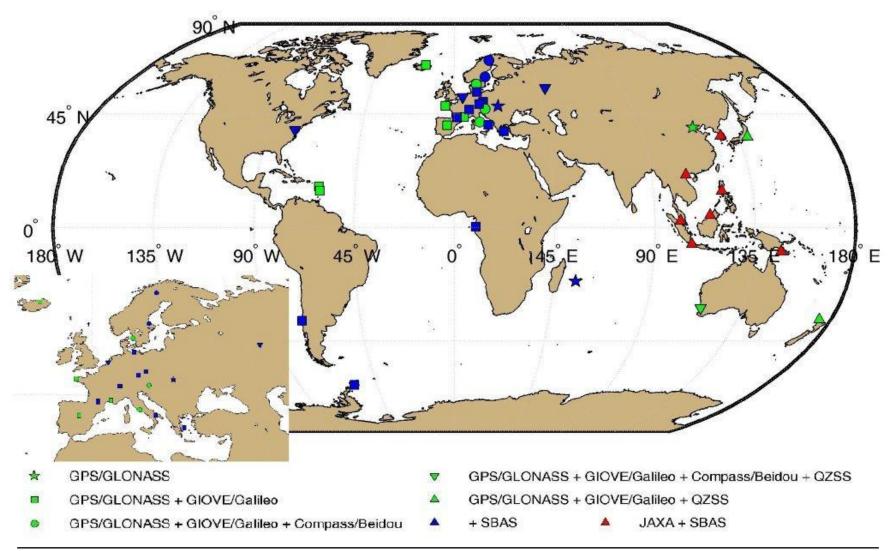
Galileo	E1	1575.42	A	PRS	C1A	L1A						
			B I/NAV	OS/CS/SoL	C1B	L1B		X				
			С	no data	C1C	L1C	х					X
			В+С		C1X	L1X	1		X	X	X	
			A+B+C		C1Z	L1Z						
	E5a	1176.45	Ι	F/NAV OS	C5I	L5I		X				
			Q	no data	C5Q	L5Q	x					X
			I+Q		C5X	L5X			X	X	X	
	E5b	1207.140	I I/NAV	OS/CS/SoL	C7I	L7I						
			Q	no data	C7Q	L7Q						X
			I+Q		C7X	L7X			X		X	
	E5	1191.795	I		C8I	L8I						
	(E5a+E5b)		Q		C8Q	L8Q	X					X
			I+Q		C8X	L8X			X		X	
	E6	1278.75	A	PRS	C6A	L6A			0		6	
			В	C/NAV CS	C6B	L6B	_	5 A	120	五	TR	
			С	no data	C6C	L6C	X	<u>e</u>	XX	ဗို	NE NE	ღ
			B+C		C6X	L6X	GeNeRx1	Novatel 15A	Leica GRX1200	JPS 5-G3TH	Trimble NETR9	Asterx3
			A+B+C		C6Z	L6Z	Ge	N _O	<u>E</u>	J.	Tri	Asi


Receiver Specific Intersystem Biases

GPS PRN 25 L5 Signal

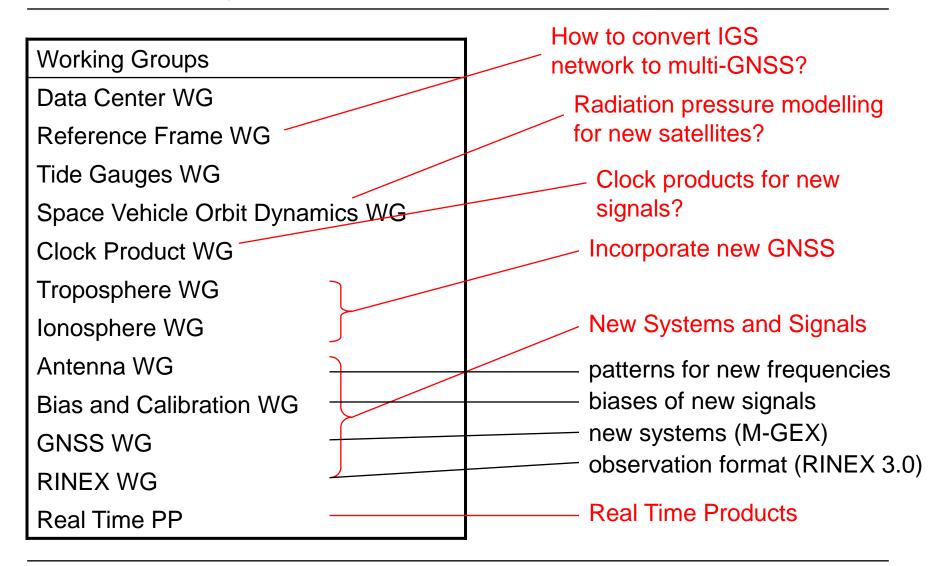


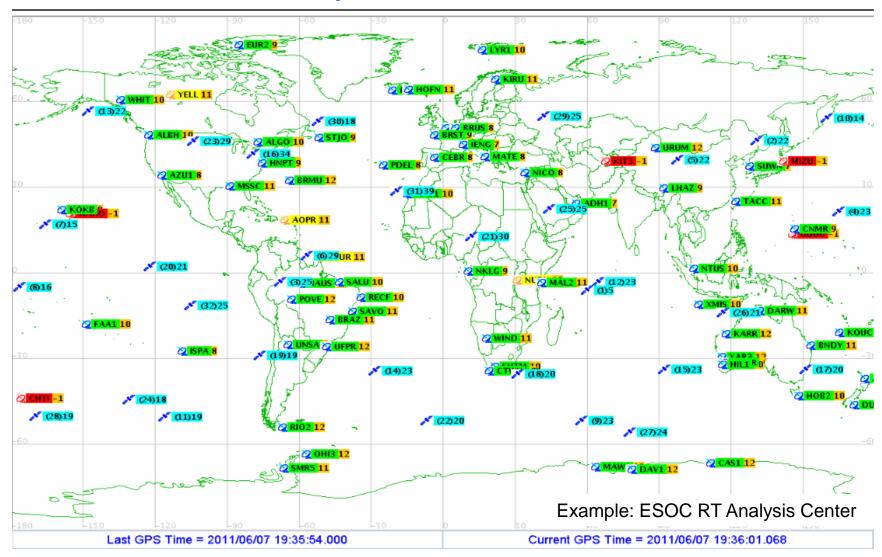
IGS IGS

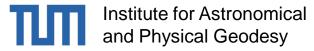

IGS CfP for Multi-GNSS Global Experiment

- IGS prepares for incorporation of new GNSS
- Goal of M-GEX
 - Experiment to operate an expanded network of new receivers capable of tracking new signals in addition to GPS & GLONASS
 - Support JAXA Multi-GNSS proposal activities
- Tasks
 - Set-up tracking network of Multi-GNSS equipment
 - Make tracking data publicly available
 - Experiment with data flow and signals, qualify equipment, signals, ...
 - Upgrade IGS network to Multi-GNSS
 - Generate Multi-GNSS products
- Status
 - Start of experiment 1. Feb. 2012
 - more than 24 proposals, for installing equipment, data center, analysis

IGS M-GEX Network




IGS Working Groups and Pilot Projects



(ICS)

Real-Time Pilot Project

Conclusions and Questions

Changing GNSS landscape

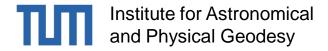
- new systems, new signals, new frequencies, new clocks, ...
- Multi-GNSS capable equipment gests available
- and user start to use it and generate files

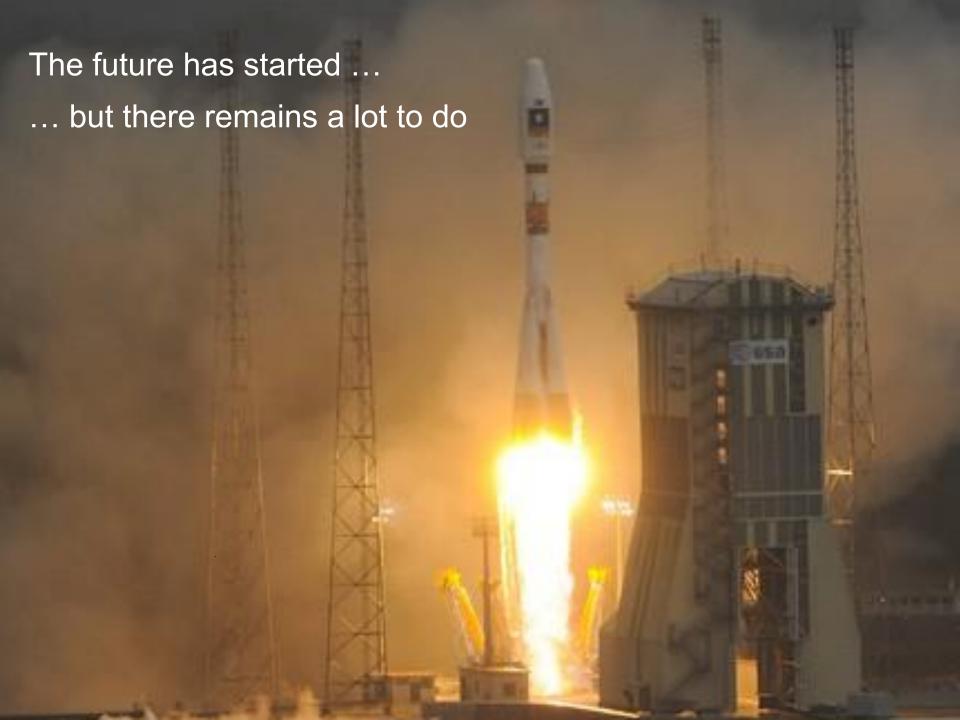
Challenges

- heterogeneous systems, equipments
- users want to use the new systems as one system, in real-time
- many biases, need characterization and standardization

Questions

- what do we need to work with heterogeneous systems and equipments?
- shall receivers track a common minimum set of signals?
- what new products the users need?
- what new products IGS has to provide for a seamless transition to Multi-GNSS?


Role of the International GNSS Service



- IGS prepares for incorporation of new GNSS
 - → M-GEX experiment
- IGS assumes leadership role in RINEX development and bias standardization
 - → joint IGS-RTCM WG chaired by IGS
 - → IGS Bias Workshop in January 2012
- IGS will provide Multi-GNSS products
- IGS goes Real-Time

IGS Network

- is the basis for the IGS's work
- is and will always be heterogeneous
 - → Open Standards are essential for a consistent integration
- is the fundament for long-term stable highly precise global reference frame
 - → how to upgrade it without compromising this fundamental product?

